Conventions

- The bunch labelled 1 travels along the (positive) z^{\prime} axis direction, while the bunch labelled 2 moves along the negative $z^{\prime \prime}$ direction, as depicted in the Figure. Both bunches have a positive velocity along the x axis, which points outwards of the ring.
- The time $t=0$ corresponds to the time when the centre of both bunches is at the nominal interaction point $(x=z=0)$. Negative (positive) times correspond to what happens before (after) the collision. At a given time t, the bunch $\# 1$ is centered around $z^{\prime}=c t$, while the bunch $\# 2$ is centered around $z^{\prime \prime}=-c t$.
- α denotes the half crossing angle: $\alpha=+15 \mathrm{mrad}$.
- The axes x^{\prime} and $x^{\prime \prime}$ (not shown) are in the (x, z) plane, orthogonal to z^{\prime} and $z^{\prime \prime}$, respectively, and their direction is defined by $z^{\prime} \wedge x^{\prime}=z^{\prime \prime} \wedge x^{\prime \prime}=z \wedge x$
- The particles in the bunches are supposed to be distributed according to a 3-dimensional Gaussian distribution. For the bunch \#1 for example, the bunch "sizes" σ_{x}, σ_{y} and σ_{z} denote the width of this Gaussian in the x^{\prime}, y and z^{\prime} direction.

The 4-dimensional vertex distribution in (x, y, z, t) is obtained from the overlap of the two Gaussian distributions that describe the bunches.

Overlap of the two Gaussian distributions

$$
\begin{aligned}
f(X, Y, Z, t) \propto & \delta\left(x_{1}=x_{2}=X, y_{1}=y_{2}=Y, z_{1}=z_{2}=Z\right) \\
& \times \exp \left(-\frac{\left(z_{1}^{\prime}-c t\right)^{2}}{2 \sigma_{z}^{2}}\right) \exp \left(-\frac{{x_{1}^{\prime}}_{1}^{2}}{2 \sigma_{x}^{2}}\right) \exp \left(-\frac{y_{1}^{2}}{2 \sigma_{y}^{2}}\right) \\
& \times \exp \left(-\frac{\left(z_{2}^{\prime \prime}+c t\right)^{2}}{2 \sigma_{z}^{2}}\right) \exp \left(-\frac{x_{2}^{\prime \prime 2}}{2 \sigma_{x}^{2}}\right) \exp \left(-\frac{y_{2}^{2}}{2 \sigma_{y}^{2}}\right)
\end{aligned}
$$

with

$$
\begin{array}{ll}
x^{\prime}=x \cos \alpha-z \sin \alpha, & x^{\prime \prime}=x \cos \alpha+z \sin \alpha \\
z^{\prime}=z \cos \alpha+x \sin \alpha, & z^{\prime \prime}=z \cos \alpha-x \sin \alpha
\end{array}
$$

One obtains:

$$
\begin{aligned}
f(X, Y, Z, t) \propto & \exp \left[-Z^{2}\left(\frac{\sin ^{2} \alpha}{\sigma_{x}^{2}}+\frac{\cos ^{2} \alpha}{\sigma_{z}^{2}}\right)\right] \\
& \times \exp \left[-X^{2}\left(\frac{\cos ^{2} \alpha}{\sigma_{x}^{2}}+\frac{\sin ^{2} \alpha}{\sigma_{z}^{2}}\right)\right] \\
& \times \exp \left(-t^{2} \frac{c^{2}}{\sigma_{z}^{2}}\right) \exp \left(X t \frac{2 c \sin \alpha}{\sigma_{z}^{2}}\right) \\
& \times \exp \left(-\frac{Y^{2}}{\sigma_{y}^{2}}\right)
\end{aligned}
$$

The distributions along the y and z directions are Gaussian, centered around the origin, of width

$$
\begin{aligned}
\sigma_{Y_{v t x}} & =\sigma_{y} / \sqrt{2} \\
\sigma_{Z_{v t x}} & =1 / \sqrt{2\left(\frac{\cos ^{2} \alpha}{\sigma_{z}^{2}}+\frac{\sin ^{2} \alpha}{\sigma_{x}^{2}}\right)}
\end{aligned}
$$

The variables X and ct show a small correlation. Under a rotation of the variables $(X, c t)$ by an angle θ, given by

$$
\tan 2 \theta=2 \frac{\sin \alpha}{\cos ^{2} \alpha} \frac{\sigma_{x}^{2}}{\sigma_{z}^{2}-\sigma_{x}^{2}}
$$

the rotated variables are distributed according to the product of two Gaussian functions. With σ_{z} of a few mm, σ_{x} of a few μm and $\sin \alpha=15 \times 10^{-3}$, this angle is tiny and the correlation between X and ct can be neglected. The
distributions of the vertex along the x direction and along the time variable are then given by Gaussian functions, of width

$$
\begin{aligned}
\sigma_{X_{v t x}} & =1 / \sqrt{2\left(\frac{\cos ^{2} \alpha}{\sigma_{x}^{2}}+\frac{\sin ^{2} \alpha}{\sigma_{z}^{2}}\right)} \simeq \sigma_{x} / \sqrt{2} \\
\sigma_{t} & =\sigma_{z} /(c \sqrt{2})
\end{aligned}
$$

